Neoplasie uroteliali
Posters & oral presentations

Cristina Masini
Oncologia Medica
IRCCS-Arcispedale S. Maria Nuova - Reggio Emilia
OUTLINE

❖ Role of chemo-radiotherapy in bladder cancer

- Oral abstract #280: long terms outcomes of BC2001 (CRUK/01/004):
 A phase III trial of chemo-radiotherapy versus radiotherapy and standard RT versus reduced high-dose volume RT in muscle invasive bladder cancer

- Abstract #343: The impact of MRE11 in nuclear to cytoplasmic ratio on outcomes in muscle invasive bladder cancer an analysis of NRG/RTOG 8802, 8903, 9506, 9706, 9906, and 0233

- Abstract #292: Quality of life (QL) of patients (pts) treated for muscle invasive bladder cancer (MIBC) with radiotherapy (RT) +/- chemotherapy (CT) in the BC2001 trial (CRUK/01/004): Analysis of impact of treatment at an individual level

- Abstract #298: Outcome of BC2001 patients (CRUK/01/004) who received neoadjuvant chemotherapy prior to randomization to chemo-radiotherapy (cRT) versus radiotherapy (RT)

❖ Combining targeted therapy with immunocheckpoint inhibitors

- Abstract #293: A phase I study of cabozantinib plus nivolumab (CaboNivo) and ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors
OUTLINE

❖ Role of chemo-radiotherapy in bladder cancer

- **Oral abstract #280**: long terms outcomes of BC2001 (CRUK/01/004):
 A phase III trial of chemo-radiotherapy versus radiotherapy and standard RT versus reduced high-dose volume RT in muscle invasive bladder cancer

- **Abstract #343**: The impact of MRE11 in nuclear to cytoplasmic ratio on outcomes in muscle invasive bladder cancer an analysis of NRG/RTOG 8802, 8903, 9506, 9706, 9906, and 0233

- **Abstract #292**: Quality of life (QL) of patients (pts) treated for muscle invasive bladder cancer (MIBC) with radiotherapy (RT) +/- chemotherapy (CT) in the BC2001 trial (CRUK/01/004): Analysis of impact of treatment at an individual level

- **Abstract #298**: Outcome of BC2001 patients (CRUK/01/004) who received neoadjuvant chemotherapy prior to randomization to chemo-radiotherapy (cRT) versus radiotherapy (RT)

❖ Combining targeted therapy with immunocheckpoint inhibitors

- **Abstract #293**: A phase I study of cabozantinib plus nivolumab (CaboNivo) and ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors
BC2001 Trial design

Eligible patients had histologically confirmed T2-T4a N0 M0 MIBC, WHO performance status 0 to 2; GFR > 25ml/min. For radiotherapy (RT) comparison: single tumour at time of invasive disease diagnosis.
BC2001 Methods

Treatment
- Platinum based neoadjuvant CT permitted – see abstract 298 / poster E11
- 3D conformal RT (55Gy/20 fractions/4 weeks or 64Gy/32 fractions/6.5 weeks)
- Reduced high dose volume RT: 80% RT dose to uninvolved bladder
- Chemotherapy: intravesical MMC (12mg/m2) d1 of RT and 5-FU as a continuous infusion at 500mg/m2/24 hours for 5 days corresponding to RT fractions 1-5 and 16-20

Key assessments
- Follow up for disease control and late toxicity (RTOG & LENT/SOM scales) at 6, 9 & 12 months after randomization and annually thereafter
- QoL: Functional Assessment of Cancer Therapy-Bladder (FACT-BL) questionnaires at baseline, end of treatment (EoT), 6, 12, 24, 36, 48 & 60 months (m) post RT – see abstract 292 / poster E5
Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>% patients (N=458)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) at randomisation Median (IQR)</td>
<td>72.9 (65.5, 77.6)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>80.8%</td>
</tr>
<tr>
<td>Female</td>
<td>19.2%</td>
</tr>
<tr>
<td>Pathological stage</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.2%</td>
</tr>
<tr>
<td>T2</td>
<td>83.3%</td>
</tr>
<tr>
<td>T3a</td>
<td>6.6%</td>
</tr>
<tr>
<td>T3b</td>
<td>6.6%</td>
</tr>
<tr>
<td>T4a</td>
<td>3.3%</td>
</tr>
<tr>
<td>Residual mass post resection</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29.2%</td>
</tr>
<tr>
<td>No</td>
<td>70.8%</td>
</tr>
<tr>
<td>Neoadjuvant chemotherapy planned</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29.7%</td>
</tr>
<tr>
<td>No</td>
<td>70.3%</td>
</tr>
<tr>
<td>Planned radiotherapy schedule</td>
<td></td>
</tr>
<tr>
<td>55Gy/20F</td>
<td>38.8%</td>
</tr>
<tr>
<td>64Gy/32F</td>
<td>61.2%</td>
</tr>
</tbody>
</table>
Updated results - CT comparison

Loco-Regional Control (LRC)

- HR (95% CI) = 0.61 (0.43-0.86), p1=0.004
- Adj. HR (95% CI) = 0.59 (0.41-0.83), p2=0.003

Invasive Loco-Regional Control (ILRC)

- HR (95% CI) = 0.55 (0.36-0.84), p1=0.006
- Adj. HR (95% CI) = 0.52 (0.33-0.81), p2=0.004

Snapshot of data: July 2016, N=360, median FUP 117.1 m

Presented By Emma Hall at 2017 Genitourinary Cancers Symposium
Borderline significant improvement in metastasis free survival
Conclusions:

- Data continues to support the use of chemoradiotherapy (robust improvement in bladder cancer specific survival)

- 5Fu/MMC is a standard of care

Snapshot of data: July 2016, N=360, median FUP 117.1 m
Updated results - CT comparison

Salvage Cystectomy Rate

HR (95% CI) = 0.54 (0.31-0.95), p1 = 0.03

<table>
<thead>
<tr>
<th>N at risk (events)</th>
<th>Months since randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>cRT 182 (15)</td>
<td>24 98 (3) 79 (1) 51 (0)</td>
</tr>
<tr>
<td>RT 178 (25)</td>
<td>24 95 (3) 64 (4) 49 (1)</td>
</tr>
</tbody>
</table>

Reason for salvage cystectomy

<table>
<thead>
<tr>
<th>Reason for salvage cystectomy</th>
<th>cRT+RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>53</td>
</tr>
<tr>
<td>Recurrence</td>
<td>43</td>
</tr>
<tr>
<td>Late RT toxicity</td>
<td>5</td>
</tr>
<tr>
<td>Other / unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

Snapshot of data: July 2016, N=360, median FUP 117.1 m

Presented By Emma Hall at 2017 Genitourinary Cancers Symposium
Radiotherapy volume:

- No significant difference in long-term toxicity depending on radiotherapy field size

- No difference in loco-regional control based on radiotherapy field size
But...the conclusions of the discussant are different:

- Data continues to support the use of chemoradiotherapy as an option for these pts

- 5FU/MMC is a standard of care regardless of cisplatin eligibility

- Cannot draw conclusions on dose volume

- Other options for chemosensitization:
 → cisplatin eligible: 5FU and cisplatin or cisplatin single agent
 → cisplatin ineligible: low-dose gemcitabine (lower level evidence)
We need to...

- Predictive biomarkers for chemo-RT in bladder cancer
- Novel approaches—moving beyond chemotherapy (integration of immunotherapy with radiation therapy)
Predictive biomarkers for chemo-RT response

- Radiotherapy mechanism of action is via DNA damage
 - Direct ionization of DNA leading to double strand breaks
 - Indirect by ionization of water molecules producing free radicals which then damage DNA
- DNA repair mechanisms could be important as predictive biomarkers
MRE11 and radiation response

- MRE11 is part of the MRN complex with RAD50 and NBS1
 - Detects DNA breaks
 - Involved in homologous recombination, non-homologous end-joining, and telomere maintenance
- MRE11 expression is regulated at the post-transcriptional level
- High MRE11 (rather than deficiency) associated with better outcomes
The impact of MRE11 in nuclear to cytoplasmic ratio on outcomes in muscle invasive bladder cancer an analysis of NRG/RTOG 8802, 8903, 9506, 9706, 9906, and 0233 – Abstract 343

NRG: MRE11 validation

- NRG/RTOG 8802, 8903, 9506, 9706, 9906, and 0233 (N=465 but 135 available for analysis)
- Archival tissue via TMA or unstained slides evaluated by AQUA analysis
- MRE11 divided into quartile cut points looking at N/C ratio
- Endpoint was disease-specific mortality
MRE11 lowest quartile associated with higher DSM

- HR = 2, 95% CI: 1.1, 3.8, p = 0.033
- 4-year DSM was 41% for pts with MRE11 lowest quartile vs. 21% for pts with MRE11 N/C > 1.49.
- MRE11 was not associated with OS or bladder intact survival

Conclusions abstract 343:
This adds further evidence of MRE11 as a potential RT response biomarker for selection of pts most likely to respond to bladder-sparing CRT

Presented By Jonathan Rosenberg at 2017 Genitourinary Cancers Symposium
Quality of life (QL) of patients (pts) treated for muscle invasive bladder cancer (MIBC) with radiotherapy (RT) +/- chemotherapy (CT) in the BC2001 trial (CRUK/01/004): Analysis of impact of treatment at an individual level – Abstract 292

BC2001 quality of life substudy

Assessments:
- Pts were asked to complete Functional Assessment of Cancer Therapy-Bladder (FACT-BL) questionnaires at baseline (bl), end of treatment (EoT), 6, 12 months (m) & 2, 3, 4 & 5 years post RT.
- FACT-BL includes 39 questions on 5 point Likert scale:
 - High scores represent better QoL
 - Five domains: Physical well-being (PWB), Social/family well-being (SWB), Emotional well-being (EWB), Functional well-being (FWB), Additional concerns (BLCS)
 - FACT-BL total score (TOTAL) = sum of all scores
 - Trial Outcome Index (TOI) = sum PWB, FWB & BLCS

Endpoints
- **Primary:** Change from baseline in BLCS - primary timepoint of interest: 12m
- **Secondary included:** Change from baseline in TOTAL FACT-BL and TOI
- **Exploratory:** Clinically relevant difference in BLCS, TOI and TOTAL

Statistical considerations
- Analysis conducted on intention to treat population for 1) **all patients** (N=458), 2) **CT comparison** (n=360) & 3) **RT comparison** (n=219).
- 5% significance was used at 1 year for BLCS, 1% was used for all other timepoints & endpoints (in view of multiple testing).
Conclusions:

- Following (chemio)RT a significant proportion of pts experience a decline in QoL at EoT but after 12m overall QL is similar to that at baseline.
- The addition of chemotherapy or modification of RT technique in this study had no significant impact on patient reported QoL.
Outcome of BC2001 patients (CRUK/01/004) who received neoadjuvant chemotherapy prior to randomization to chemo-radiotherapy (cRT) versus radiotherapy (RT) - Abstract 298

117 pts received neoadjuvant chemotherapy: 56 in the cRT group and 61 in the RT group

- Neoadjuvant treatment was: Gemcitabine plus cisplatin (69.2%) or plus carboplatin (4.3%), methotrexate/vinblastine/doxorubicin/cisplatin (MVAC, 13.6%), cisplatin/methotrexate/vinblastine (CMV 11.1%) or other (<2%).
- RT schedule: 59 patients (50.9%) received the 55Gy/20F and 15 patients (12.8%) received RHDVRT within the RT comparison of the trial.
- 92.3% cRT and 91.8% RT pts completed radiotherapy as planned.

Efficacy: cRT resulted in better loco-regional control in this group of patients, though the difference was not statistically significant.

Conclusions- 1:

The benefit in improved LRC of synchronous chemotherapy with 5FU/MMC was also found in the subgroup of BC2001 pts receiving neoadjuvant chemotherapy, with no significance increase in late toxicity.
Conclusions -2:

- No differences in OS or MFS between randomised groups were found. Median OS was 47 months and median MFS 68.5 months.

- Neoadjuvant chemotherapy did not compromise the delivery of radical curative treatment with RT or cRT.

- Median MFS was: cRT 118.5 vs RT 54.2 months.
- 5-year MFS rates were: cRT 54% vs RT 48%.
- No statistically significant differences in MFS were found.

- Median OS was: cRT 50.4 vs RT 46.7 months.
- 5-year OS rates were: cRT 48% vs RT 46%.
- No statistically significant differences in OS were found.

- No differences found in OS or MFS between different neoadjuvant regimes.

- Grade 3 or above adverse events during treatment occurred in 26.7% GC patients vs 29.0% non-GC patients. During follow-up, these occurred in 11.3% GC patients vs 4.8% non-GC (RTOG).
OUTLINE

❖ **Role of chemo-radiotherapy in bladder cancer**
- **Oral abstract #280**: long terms outcomes of BC2001 (CRUK/01/004):
 A phase III trial of chemo-radiotherapy versus radiotherapy and standard RT versus reduced high-dose volume RT in muscle invasive bladder cancer
- **Abstract #343**: The impact of MRE11 in nuclear to cytoplasmic ratio on outcomes in muscle invasive bladder cancer an analysis of NRG/RTOG 8802, 8903, 9506, 9706, 9906, and 0233
- **Abstract #292**: Quality of life (QL) of patients (pts) treated for muscle invasive bladder cancer (MIBC) with radiotherapy (RT) +/- chemotherapy (CT) in the BC2001 trial (CRUK/01/004): Analysis of impact of treatment at an individual level
- **Abstract #298**: Outcome of BC2001 patients (CRUK/01/004) who received neoadjuvant chemotherapy prior to randomization to chemo-radiotherapy (cRT) versus radiotherapy (RT)

❖ **Combining targeted therapy with immunocheckpoint inhibitors**
- **Abstract #293**: A phase I study of cabozantinib plus nivolumab (CaboNivo) and ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors
A phase I study of cabozantinib plus nivolumab (CaboNivo) and ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors – Abstract 293

Results:
48 pts enrolled
30 pts treated with CaboNivo combination
18 pts treated with CaboNivoIpi combination
Results:

ORR = 30%,
CabNivo = 38% (bladder 44%),
CaboNivoIpi 18% (bladder 29%)

Table 3: Summary of best response by tumor type and dose level

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Total N</th>
<th>Stable Disease % (N)</th>
<th>Partial Response % (N)</th>
<th>Complete Response % (N)</th>
<th>ORR % (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial carcinoma</td>
<td>43</td>
<td>56 (24)</td>
<td>23 (10)</td>
<td>7 (3)</td>
<td>38 (13)</td>
</tr>
<tr>
<td>Urachal adenocarcinoma</td>
<td>16</td>
<td>56 (9)</td>
<td>25 (4)</td>
<td>6 (2)</td>
<td>38 (6)</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the bladder</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>20 (1)</td>
</tr>
<tr>
<td>Castration-resistant prostate cancer</td>
<td>2</td>
<td>0</td>
<td>50 (1)</td>
<td>50 (1)</td>
<td>100 (2)</td>
</tr>
<tr>
<td>Renal cell carcinoma—sarcomatoid</td>
<td>9</td>
<td>66 (6)</td>
<td>11 (1)</td>
<td>0</td>
<td>11 (1)</td>
</tr>
<tr>
<td>Trophoblastic</td>
<td>1</td>
<td>50 (1)</td>
<td>50 (1)</td>
<td>0</td>
<td>50 (1)</td>
</tr>
<tr>
<td>Germ cell tumor</td>
<td>1</td>
<td>100 (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>1</td>
<td>100 (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Penile cancer</td>
<td>4</td>
<td>50 (2)</td>
<td>50 (2)</td>
<td>0</td>
<td>50 (2)</td>
</tr>
<tr>
<td>Combination</td>
<td>43</td>
<td>56 (24)</td>
<td>23 (10)</td>
<td>7 (3)</td>
<td>30 (13)</td>
</tr>
<tr>
<td>CaboNivo</td>
<td>26</td>
<td>46 (12)</td>
<td>31 (8)</td>
<td>8 (2)</td>
<td>38 (10)</td>
</tr>
<tr>
<td>CaboNivolpi</td>
<td>17</td>
<td>70 (12)</td>
<td>12 (2)</td>
<td>6 (1)</td>
<td>18 (3)</td>
</tr>
</tbody>
</table>

*Solid tumor in lung became cavitary (no solid component), but outline became larger; categorized as stable disease.
CRPC: castration-resistant prostate cancer; GCT: germ cell tumor; ORR: overall response rate; SCC: squamous cell carcinoma; urachal: urachal adenocarcinoma.
Conclusions:

- Both combinations are safe and well tolerated
- The recommended phase II dose for CaboNivo= cabo 40 mg + nivo 3 mg/kg
- The recommended phase II dose for CaboNivoIpi = cabo 40 mg + nivo 3 mg/kg + ipi 1 mg/kg
- The combination is active in GU tumors in particular urothelial carcinoma
- Rare tumors such as squamous cell carcinoma of the bladder, urachal adenocarcinoma and penile carcinoma demonstrated response to the combination
In conclusion:

1) Despite encouraging data of combined chemo-RT for treatment of bladder cancer...
 Today integrated treatment for bladder-sparing is reserved only for pts
 - who refuse radical cystectomy
 - unfit for comorbidities and age
 - who have unresectable disease

2) The efficacy of immunocheckpoint inhibitors in urothelial tumors is considerable, but we already expect data of combination with other treatments