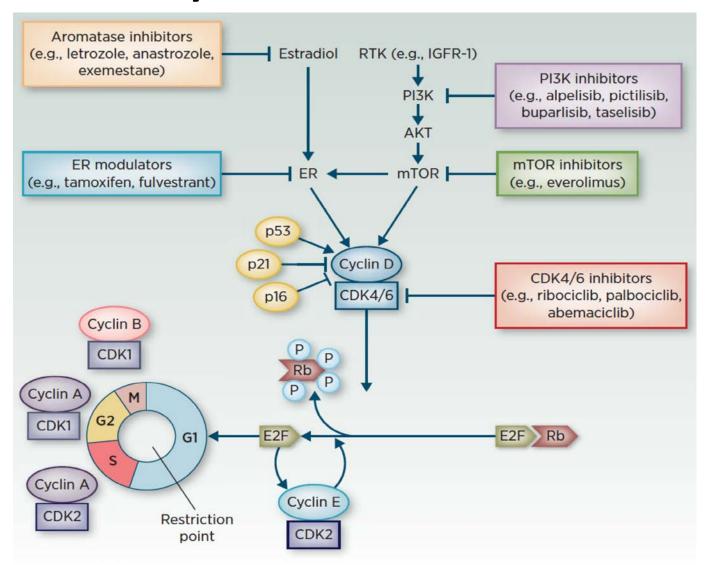


Inibitori delle cicline: una nuova classe di farmaci nella cura dei tumori

Presidente del convegno: Carmine Pinto

NAPOLI, Hotel Royal Continental | 26-27 settembre 2017


La farmacologia dei CDK4/6 inibitori

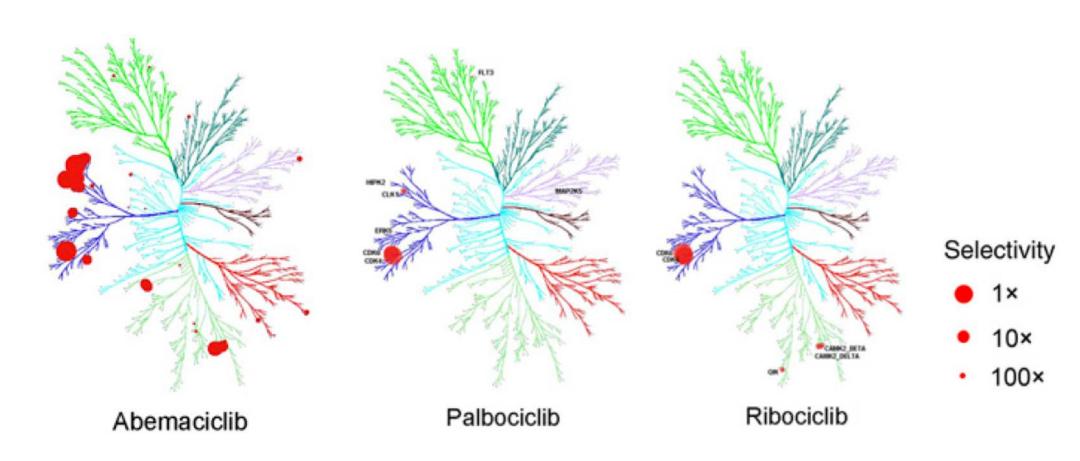
Romano Danesi

UO Farmacologia clinica e Farmacogenetica Università di Pisa

The role of cyclin D-CDK4/6-p16-Rb pathway in the cell cycle

Classification of CDK inhibitors

- 1st generation (e.g., flavopiridol)
 - Low potency
 - Lack of specificity (pan-CDK) and off-target toxic effects
- 2nd generation (e.g., dinaciclib)
 - Broad CDK family interactions
 - Equivalent potency for untransformed cells and tumor cells
- 3rd generation (e.g., palbociclib)
 - Selective for a subset of the CDK kinase family
 - Selective for tumor cells compared to untransformed cells


Target interaction and pharmacodynamics of CDK4/6 inhibitors

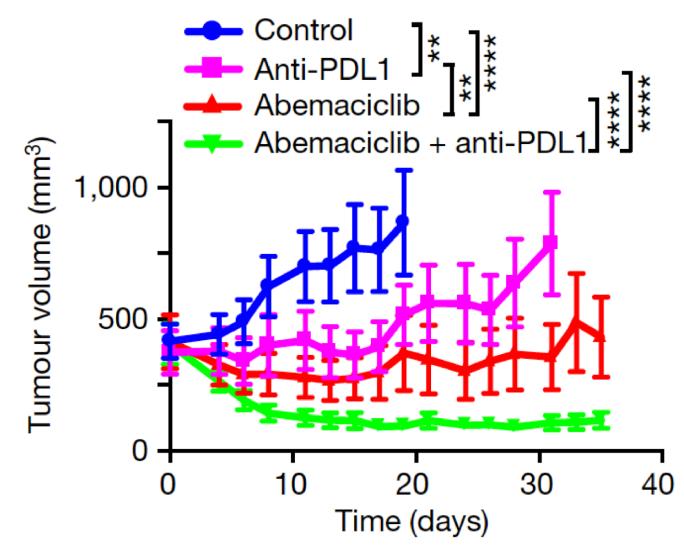
Binding modes for 3rd generation drugs

Kinome selectivity of selective CDK4/6 inhibitors

Biochemical and cellular potencies of selective CDK drugs

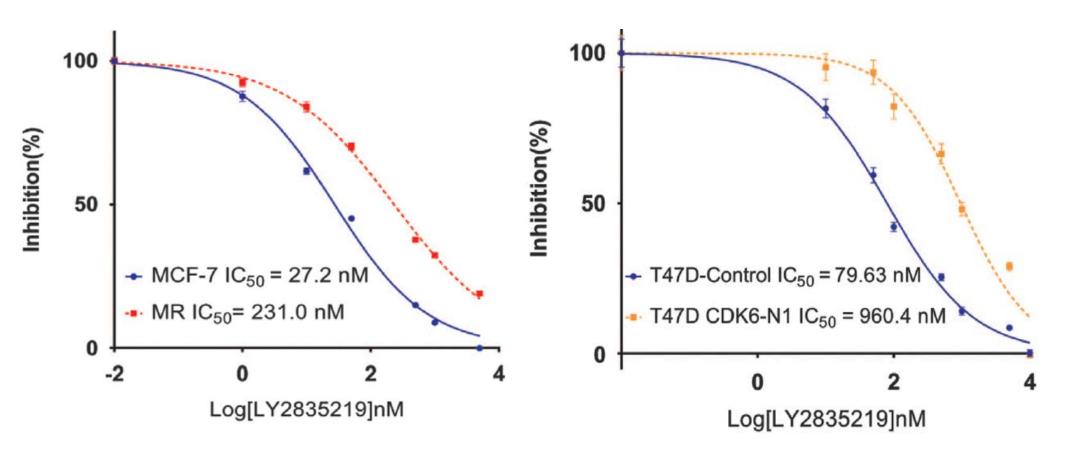
Analysis	Abemaciclib LY2835219	Palbociclib PD-0332991	Ribociclib LEE011
Biochemical			
CDK1/cyclinA ₂ K _i (nmol/L)	330 ± 90	>1,400	>1,400
$CDK2/cyclinE_1 K_i (nmol/L)$	150 ± 60	>2,500	>2,500
CDK4/cyclinD ₃ K _i (nmol/L)	0.07 ± 0.01	0.26 ± 0.03	0.53 ± 0.08
CDK5/p35 K _i (nmol/L)	86 ± 12	>2,000	>2,000
$CDK6/cyclinD_1 K_i (nmol/L)$	0.52 ± 0.17	0.26 ± 0.07	2.3 ± 0.3
CDK7/cyclinH/MAT1 K _i (nmol/L)	220 ± 10	>2,000	>2,000
$CDK9/cyclinT_1 K_i (nmol/L)$	4.1 ± 1.3	150 ± 10	190 ± 20

Biochemical and cellular potencies of selective CDK drugs

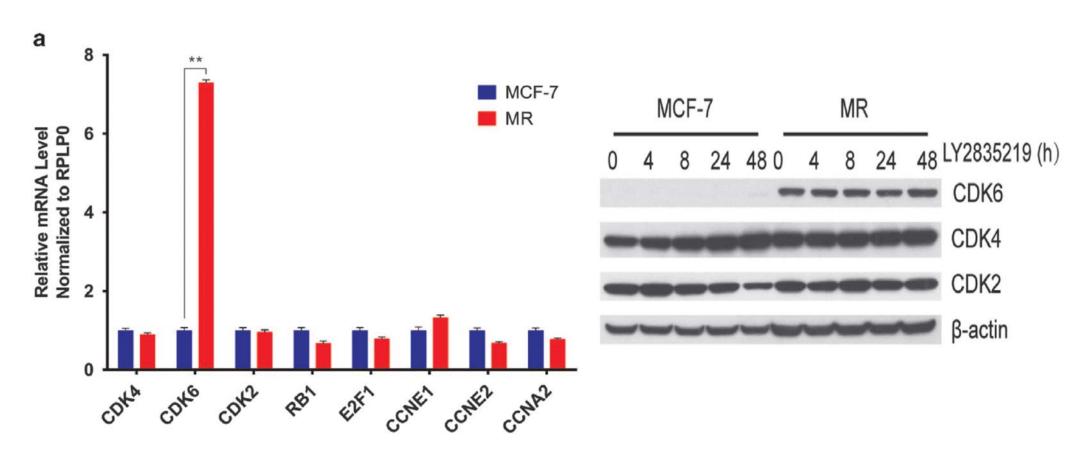

Analysis	Abemaciclib LY2835219	Palbociclib PD-0332991	Ribociclib LEE011
Cell proliferation			
Breast cancer (MCF-7) IC ₅₀ (nmol/L)	86 ± 14	120 ± 60	200 ± 90
Breast cancer (T47D) IC ₅₀ (nmol/L)	94 ± 41	130 ± 80	260 ± 130
Bone marrow mononuclear cells IC ₅₀ (nmol/L)	230 ± 27	240 ± 43	1,700 \pm 231
Cytotoxicity			
Peripheral blood mononuclear cells IC ₅₀ (nmol/L)	$4{,}700\pm175$	18,000 \pm 521	>10,000

CDK4/6 inhibition triggers anti-tumour immunity

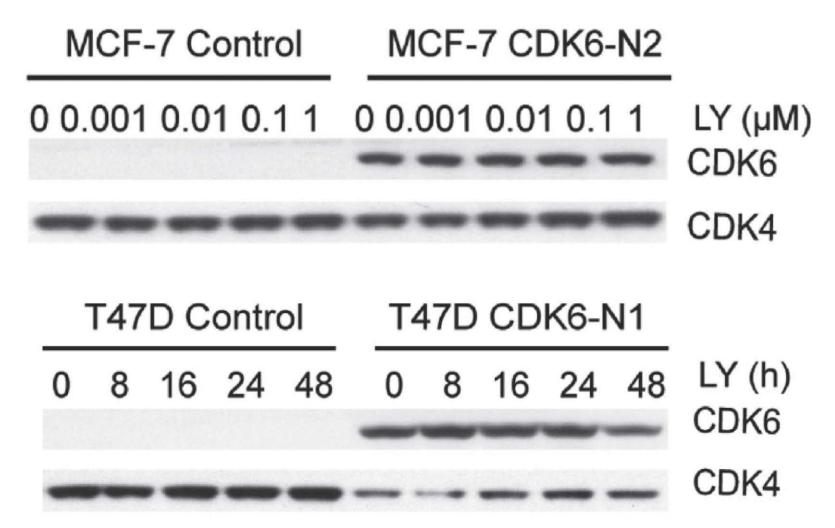
Tumor volume after treatment with abemaciclib with or without anti-PDL1



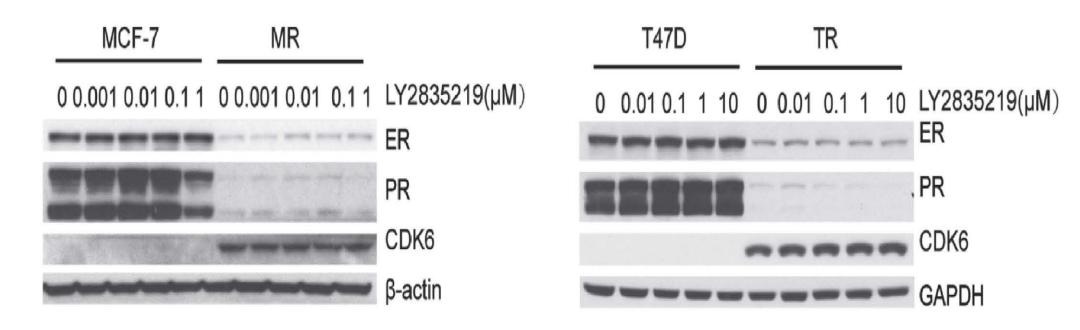
Mechanisms of resistance



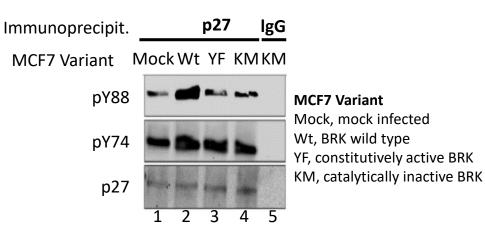
CDK6 amplification promotes BRCA resistance to CDK4/6i and loss of ER signaling

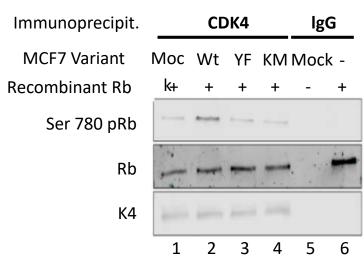


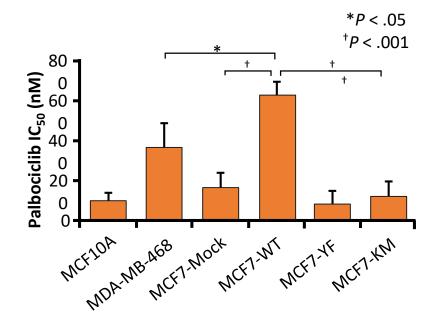
CDK6 amplification promotes BRCA resistance to CDK4/6 inhibitors



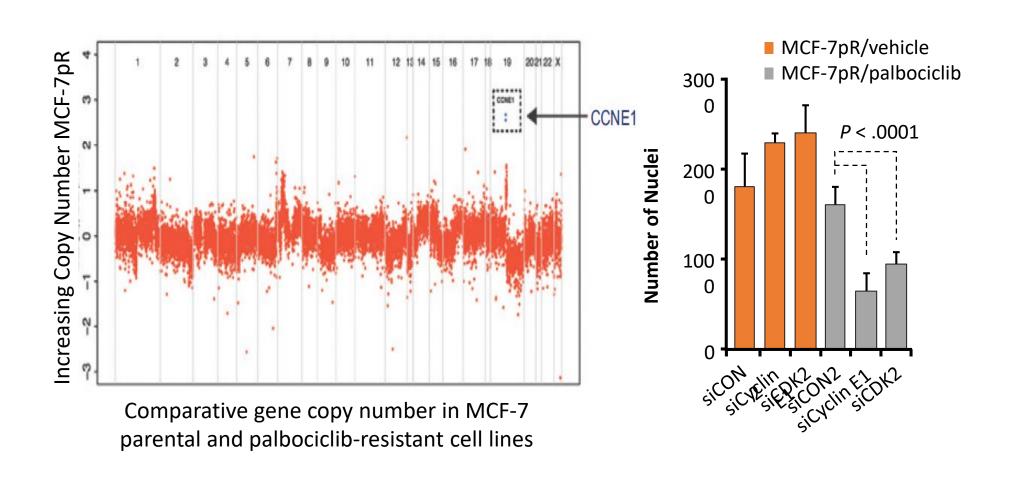
CDK6 amplification promotes BRCA resistance to CDK4/6 inhibitors




CDK6 amplification promotes BRCA resistance to CDK4/6i and loss of ER signaling



Primary Resistance Possibly Linked to Breast Tumor-Related Kinase (BRK) Expression

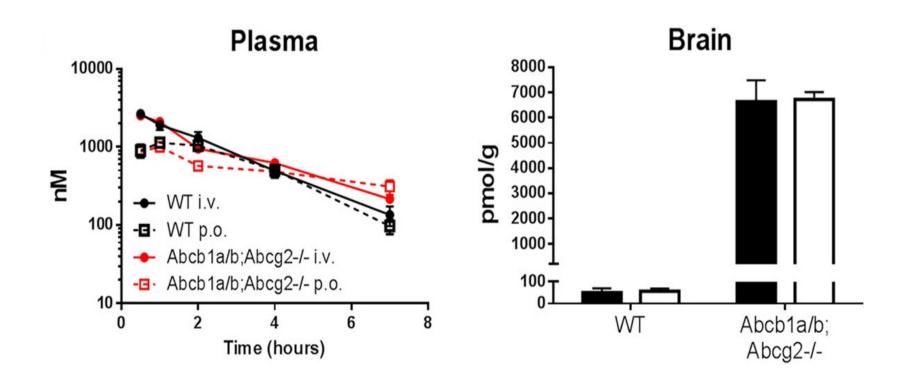


- BRK phosphorylates p27Kip1
- Results in activation of CDK4
- Leads to palbociclib resistance
- BRK has been shown to be overexpressed in breast carcinomas

Resistance to palbociclib and cyclin E1 gene amplification in a cell line model

Pharmacokinetics and drug interactions of CDK4/6 inhibitors

Selective CDK4/6 Inhibitors: Comparison of Key PK Characteristics


	Palbociclib	Ribociclib	Abemaciclib
Route	РО	РО	РО
Dose, mg	125 QD	600 QD	200 BID
Schedule	3 wks on/1 wk off	3 wks on/1 wk off	Continuous
Half-life, hrs	27.0	32.6	17.0-38.0
CNS penetration	No	No	Yes

DeMichele A, et al. Clin Cancer Res. 2015;21:995-1001. Hamilton E, et al. Cancer Treatment Rev. 2016;45:129-138. Infante JR, et al. Clin Cancer Res. 2016;22:5696-5705. Dickler MN, et al. ASCO 2016. Abstract 510. Barroso-Sousa R, et al. Breast Care. 2016;11:167-173.

ABCB1 and ABCG2 restrict the brain penetration of palbociclib

ABC transporter knockout mice

de Gooijer et al. Invest New Drugs (2015)

Potential drug-drug interactions

- Absorption and drug exposure were found to be low in the fasted state in a portion of the population, which was increased when administered with food. Therefore, taking palbociclib on an empty stomach could reduce drug levels and may compromise effectiveness in a subset of patients.
- Abemaciclib undergoes extensive hepatic metabolism in humans. CYP3A is the enzyme responsible for the majority of the CYP-mediated metabolism of abemaciclib and its metabolites. This suggests that concomitant use of strong CYP3A inducers or inhibitors should be avoided with abemaciclib.

Potential drug-drug interactions with palbociclib and ribociclib

Drug class	Agent	Treatment implications	Recommendation
Strong CYP3A inducers			
Antibiotics	All rifamycin class agents (e.g., rifampin, rifabutin, rifapentine)	Reduced exposure of palbociclib or ribociclib.	Avoid concomitant use and consider alternative therapy.
Anticonvulsants	Phenytoin, carbamazepine, barbiturates (e.g., phenobarbital)		
Other	Enzalutamide, St. John's Wort		

Potential drug-drug interactions with palbociclib and ribociclib

Strong CYP3A inhibitors

Antibiotics Clarithromycin, telithromycin

Increased exposure of palbociclib and ribociclib.

Avoid concomitant use and consider alternative therapy.

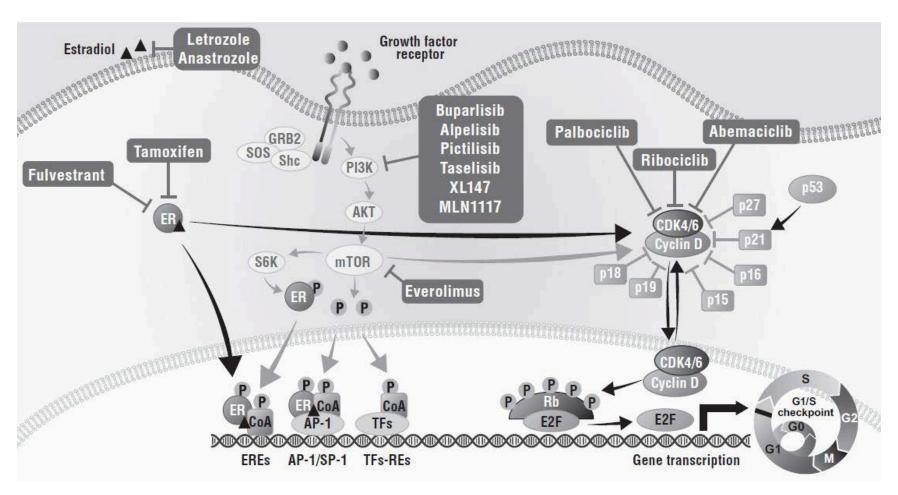
Antifungals Itraconazole, ketoconazole, posaconazole, voriconazole

Antiretrovirals, Atazanavir, darunavir, indinavir, protease inhibitors lopinavir/ritonavir, nelfinavir, ritonavir, saquinavir, telaprevir

Other Grapefruit or grapefruit juice,

nefazodone

Reduce palbociclib dose to 75 mg or ribociclib dose to 400 mg once daily if patients must be coadministered a strong CYP3A inhibitor. Reinitiate previous palbociclib dose after 3–5 half-lives or ribociclib dose after 5 half-lives of inhibitor after discontinuation.



Potential drug-drug interactions with palbociclib and ribociclib

Sensitive CYP3A substrates with a narrow therapeutic index	Midazolam, alfentanil, cyclosporine, dihydroergotamine, ergotamine, everolimus, fentanyl, pimozide, quinidine, sirolimus and tacrolimus	May result in increased exposure of concomitant agent.	Monitor closely for signs of toxicity of concomitant agent. Dose of concomitant agent may need to be reduced.
For ribociclib only QT prolonging agents ^a			
Antiarrhythmics	Amiodarone, disopyramide, procainamide, quinidine, sotalol	QTc prolongation and related consequences.	Avoid coadministration with ribociclib
Other	Chloroquine, halofantrine, clarithromycin, haloperidol, methadone, moxifloxacin, bepridil, pimozide, ondansetron (IV)		

Combo rationale

Spring L, et al. Discov Med. 2016 Jan;21(113):65-74.

- Understanding of cell cycle and transcriptional effects of CDK4/6 inhibition is critical for clinical utilization
 - Combination with other targeted drugs
 - Optimal treatment sequence
- Interindividual variability needs to be monitored
 - Potential DDIs (TDM)
 - Genetic make up (pharmacogenetics)
- Translational research
 - Focus on mechanisms of resistance